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The exact mean time between encounters of a given particle in a system consisting of many particles
undergoing random walks in discrete time is calculated, on both regular and complex networks. Analytical
results are obtained both for independent walkers, where any number of walkers can occupy the same site, and
for walkers with an exclusion interaction, when no site can contain more than one walker. These analytical
results are then compared with numerical simulations, showing very good agreement.
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I. INTRODUCTION

During the past decade, there has been an explosion of
interest in the properties and applications of complex net-
works with heterogeneous structure. This is due to their im-
portance for modeling a wide range of phenomena, ranging
from those in social systems, such as the internet and net-
works of acquaintances, to biological systems, such as ge-
netic regulatory networks �1,2�.

After much initial work on the structure of these net-
works, attention has now turned to dynamical processes
which take place on them, with the aim of understanding the
effect that different types of network structure have on the
dynamical properties of a system �2,3�. As representative ex-
amples in this direction, we mention studies on epidemics
�4�, the voter model �5� and reaction-diffusion processes �6�
occurring on complex networks.

The properties of random walks on networks have also
attracted much attention, both for single walkers �7–11� and
for multiwalker systems �12–14�. These are perhaps the sim-
plest systems involving motion of particles on networks, and
hence, are of interest to understand the relation between the
network structure and diffusive properties, such as the mean
transit time from one node to another and the mean time to
return to a given node �7,8,15,16�.

These results have applications to agent-based models
�also called “individual-based models”�, in which “agents”
�particles with internal states� diffuse in space until they en-
counter each other, at which point they interact following
model-specific rules. If the agents neither die nor reproduce,
so that their total number is constant, then an important
quantity in the system is the time between their encounters,
which we call the encounter time.

An instructive example is the Bonabeau model, in which
agents represent animals that fight when they meet, with the
winner and loser gaining and losing social status, respec-
tively �17�. This and similar models undergo a phase transi-
tion from a homogeneous, nondifferentiated society, to a so-
ciety with two “social classes,” one successful and one
unsuccessful �17–20�. One of the key features in this model

is the time scale given by the mean encounter time �20�.
Such models have also been studied on complex networks

�21�. Intuitively, for a complex network with highly con-
nected hubs, all walkers have a tendency to migrate toward
the hubs, and thus, they will encounter other walkers more
frequently. The encounter time provides a quantitative mea-
sure of this effect.

Systems of many particles undergoing random walks on
complex networks are so complicated that there are usually
very few quantities which can be calculated exactly. None-
theless, in this paper, it is shown that the mean encounter
time of a given walker in the system is often amenable to
exact calculation.

To calculate the mean encounter time on networks, en-
counters are viewed in terms of recurrences �or returns� to a
set of encounter configurations, and the Kac recurrence theo-
rem is applied. This theorem gives the exact recurrence time
to a set in terms of its probability in equilibrium, that is, the
probability �frequency� of occupation of a set after the sys-
tem has evolved for a long time and any transients have died
away. For many random walkers on complex networks, even
calculating such equilibrium probabilities already requires
some work �13�. The calculation is also complicated by the
necessity to carefully define when encounters occur. By car-
rying out these steps, we calculate equilibrium probabilities
and mean encounter times for many random walkers with
and without exclusion on regular and complex networks.

The paper is structured as follows. In Sec. II, the required
notation is introduced, and the main idea of the paper is
presented, namely, that encounter times may be expressed as
recurrence times. In Sec. III, this is applied to calculate the
exact mean encounter time of a given particle out of many
independent walkers moving on regular and complex net-
works. In Sec. IV, the same quantity is calculated exactly for
the case of random walkers moving with exclusion on a
regular lattice. Section V then treats the least tractable case,
that of complex networks with exclusion, where results are
obtained for small and large networks under a certain as-
sumption on the dynamics. In Sec. VI, results of numerical
simulations are compared to the analytical results obtained,
and are shown to agree very well. Finally, conclusions are
drawn in Sec. VII.
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II. METHOD AND NOTATION

We first describe the main technique to be used through-
out the paper, and establish some notation.

A. Encounter times and recurrence times

We study a system of N particles undergoing random
walks on a finite network. The network consists of V nodes,
with undirected edges joining them in a certain structure �see
the next subsection�. We fix a distinguished walker and as-
sign to it the label “0.” The main question treated in this
paper is how often this distinguished walker “interacts” with
other walkers, that is, what are its encounter times �. These
are defined as the time intervals between the moments at
which the distinguished particle meets �encounters� other
walkers, measured in terms of steps per particle �a “sweep”�.

This random variable � has a certain distribution, which in
general is quite complicated. In this paper, we consider ex-
clusively its mean ���, which we call the mean encounter
time of the distinguished walker. The key idea to calculate
mean encounter times is the following: encounters of a given
walker correspond exactly to returns, or recurrences, to a
particular set, namely, the set E of configurations of the N
walkers for which an encounter of walker 0 occurs. A similar
method was recently applied in a related context in Ref. �14�.

The state of the system at a given time is given by the
vector of all walker locations sª �s1 , . . . ,sN�, where sj de-
notes the location of walker j on the network, i.e., the node
�site� where walker j is at that time. These locations are not,
however, sufficient to describe encounters—we must also
specify which walkers are chosen to interact at a given time,
which forms part of the definition of a given model. This is
necessary since, as will become clear later in the paper, two
walkers may be at the same site at the same time, but might
not interact, and hence, do not undergo an encounter, under
the particular rules of the model. We refer to the combination
of the location and interaction information as an extended
configuration.

The mean encounter time ��� of walker 0 is then given
exactly by the mean recurrence time ��E

rec� to the set E of
extended configurations corresponding to that walker’s en-
counters: ���= ��E

rec�. We can thus make use of the Kac recur-
rence theorem �10,22–24�, which gives an exact result for the
mean recurrence time ��A

rec� to a set A in an ergodic discrete-
time system, namely,

��A
rec� =

1

Peq�A�
, �1�

where Peq�A� is the probability that the system is in A in
equilibrium. A heuristic derivation of this result is given in
the Appendix.

Calculating the mean encounter time thus reduces to the
calculation of the equilibrium probability Peq�E� of the en-
counter set. Note that higher moments and other features of
the complete probability distribution of recurrence times are
in general much harder to calculate �10,24�, and will not be
addressed here.

A special case is that of systems in which the transition
probabilities P�→� from one configuration, �, to another, �,

are symmetric, satisfying P�→�= P�→�. The condition of de-
tailed balance, which is assumed to hold throughout the pa-
per, states that the flux of probability from � to � in equilib-
rium is equal to that in the reverse direction,

p�P�→� = p�P�→�. �2�

Thus, systems with symmetric transition probabilities have
equal equilibrium probability for all �accessible� configura-
tions. In this case, the Kac result thus reduces to
��A

rec�= ��� / �A�, where � is the set of all microscopic configu-
rations of the system, and � · � denotes the cardinality �number
of elements� of its argument.

Note that the encounter time as we have defined it above
is a single-particle quantity. Since all walkers are equivalent,
it may also be calculated by multiplying by N the mean
interval between encounters involving any of the walkers in
the system.

B. Notation for network structure

Throughout this paper, the fixed number of walkers is
denoted by N, the finite number of nodes in the undirected
network by V, and the mean density of walkers per node by
�ªN /V. General references for network structure include
Refs. �1,2�.

The sites of the network are labeled by i, and are joined
by undirected edges. The degree of the site i, i.e., the
number of edges which are joined to i, is denoted by ki. The
total number of sites in the network with degree k is denoted
nkª�i�ki,k

, and the degree distribution is then
P�k�ªnk /�knk, which is the probability that a randomly
chosen site has degree k. We also denote by Kª�iki twice
the total number of edges in the network �counting each edge
twice, once as leaving one node and again as arriving at
another node�, and by �k�ªK /V the mean of the degree
distribution, which satisfies K=V�k� and N /K=� / �k�.

III. INDEPENDENT WALKERS ON REGULAR AND
COMPLEX NETWORKS

We begin by studying the simplest case, that of many
independent random walkers on regular or complex net-
works, with dynamics given as follows. At each time step, a
single one of the N walkers is selected at random �uni-
formly�. If this walker is at site i, then it chooses one of its ki
neighboring sites uniformly, and jumps to it.

Under these dynamics, each walker is independent, and
thus, the known results for single walkers performing ran-
dom walks on complex networks can be applied: each walker
spends a proportion of time ki /K at node i �7,24�, i.e., a time
proportional to the degree of the node. �Recall that K=�iki is
the total degree sum.� Note that detailed balance is known to
hold in this case �7�.

A. Equilibrium distribution

First let us consider the exact equilibrium distribution of
the occupation number at a site, i.e., the probability qi�m� of
having m particles at a given site i of degree ki. Since the
walkers are independent, and visit site i with probability
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pi=ki /K, the probability qi�m� that site i has occupation
number m is given by the following binomial distribution:

qi�m� = 	N

m

	 ki

K

m	1 −

ki

K

N−m

. �3�

The mean occupation number �ni� of site i is then given by
the mean of the distribution:

�ni� = Npi =
Nki

K
= �ki, �4�

where we have defined �ª� / �k�. Thus, �ni� is proportional
to ki.

In the limit of infinite system size, V→� with N→� but
�ªN /V fixed, we obtain asymptotically a Poisson distribu-
tion,

qi�m� �
1

m!
��ki�mexp�− �ki� , �5�

which is the approximate result obtained in �13� by a differ-
ent method.

B. Mean encounter time

The mean encounter time of a distinguished walker, la-
beled by 0, is calculated using the equilibrium probability
Peq�E� of the walker’s encounter set. When there is no ex-
clusion, and several particles may occupy the same site, there
are several possible definitions of when encounters occur;
here, the following one is chosen. If the walker which moves
lands at an unoccupied site, then no encounter occurs. If,
however, the walker lands at a site containing m other par-
ticles, then the moving walker chooses exactly one of those
m particles and interacts with it, i.e., each particle in this pair
of walkers undergoes an encounter, but no other particle does
so. This allows at most a single encounter at each time step,
and forces the encounter to be a result of movement.

Consider the set of encounter configurations defined after
the walker has moved, and which contain information about
which walker moved and which other walker �if any� is in-
volved in the interaction, apart from the spatial positions of
each walker. These encounter configurations are of two
types: �i� those in which the distinguished walker was chosen
to move, and it moved to a site which already contained at
least one walker; and �ii� those in which a walker other than
the distinguished one moved, this walker landed on the site
which contains the distinguished walker, and furthermore the
distinguished walker was chosen as the interaction partner of
the moving walker.

In each of these two cases, the probability that the distin-
guished walker interacts is 1 /N times the probability that
there is at least one other walker on the same site as the
distinguished walker after the jump. This is clear in case �i�.
For case �ii�, suppose that there are mi walkers at the site,
one of which is the distinguished walker 0, but that 0 was not
the moving walker. Then one of the other mi−1 particles is
the one that was chosen to move, with total probability
�mi−1� /N, and after arriving at the new site, an interaction
was selected with the distinguished walkers 0, with probabil-

ity 1 / �mi−1�. The total probability is the product of these, so
we regain the same expression.

It remains to calculate the probability that there is at least
one other walker on the same site as the distinguished
walker. The equilibrium probability that the distinguished
particle is on a given site i with a total of m walkers at that
site �including the distinguished one� is given by

ki

K
	N − 1

m − 1

	 ki

K

m−1	1 −

ki

K

�N−1�−�m−1�

. �6�

The term ki /K denotes the probability that the distinguished
walker is at site i, the second term represents the fact that
there are m−1 other walkers at the same site, and the last
term represents the fact that the remaining N−m walkers are
at some other site. The probability that the distinguished par-
ticle interacts is given by the previous expression multiplied
by 2 /N, provided m	1.

The encounter probability if the distinguished particle is
at site i can thus be calculated as 2 /N times the probability
that the distinguished particle is not alone at that site,

2ki

NK
�1 − 	1 −

ki

K

N−1
 . �7�

The total encounter probability is then given by a sum over
all sites i,

Peq�E� =
2V

NK
�

i

ki�1 − 	1 −
ki

K

N−1
 , �8�

finally giving the exact result for the mean encounter time
per particle,

��� =
1

NPeq�E�
=

�k�
2�k�1 − �1 − k

K�N−1��k

. �9�

Here, � · �kª�k�P�k�·� denotes the mean of its argument over
the degree distribution. We have divided by N to give the
physical time, such that each particle moves on average once
per time step. Asymptotically for N→� with � fixed, we
obtain

��� �
�k�

2�k�1 − exp�− �k���k
. �10�

For regular networks with constant coordination number
z, the degree distribution is P�k�=��k−z�. For such net-
works, we thus obtain

��� =
1

2
�1 − 	1 −

�

N

N−1
−1

�
1

2�1 − exp�− ���
, �11�

which is again independent of the coordination number z.

IV. REGULAR NETWORKS WITH EXCLUSION

We now turn to walkers interacting via an exclusion in-
teraction, so that each site can be occupied by at most one
walker �12�. In this section, we consider the dynamics on a
regular network, i.e., one in which each site has the same
degree �number of neighbors�, denoted by z. The best-known
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subclass of such networks consists of regular lattices; other
regular networks include small-world networks with a con-
stant number of links per node.

The dynamics are as follows. Initially, the walkers are
distributed uniformly on the lattice, but such that there is at
most one walker at each site. The dynamics maintain this
restriction, as for example in the Bonabeau model discussed
in the introduction �17�, and are defined as follows. At each
time step, a walker is picked at random. This walker attempts
to move to one of its z neighboring sites, each with equal
probability. If the trial site is empty, then the walker moves
to the new site. If the trial site is occupied by another walker,
however, then the walkers interact, an encounter occurs, and
the invading particle remains where it is, without moving.

For this dynamics, the transition probabilities between
two configurations � and � are symmetric. To see this, note
that there are only two possible types of move. The first
possibility is that a particle can attempt to move toward a full
site, in which case both the forward and reverse transitions
are forbidden, and so the transition probabilities are both 0.
The second option is that a particle moves from an occuped
site i toward a given empty site j, with probability 1 / �Nz�. In
the reverse transition, the particle returns from the occupied
site j to the empty site i, with the same probability.

Thus, the transition probabilities are always symmetric,
and hence, the equilibrium distribution assigns to all allowed
configurations s the same equilibrium probability,
Peq�s�=1 / ���= �V−N� ! /V!. More generally, we could allow
the two interacting walkers to exchange positions with some
fixed probability pexch; the equilibrium probability Peq�s�,
and hence also the mean encounter time ���, are unaffected
by this change.

A. Mean encounter time

1. Mean-field argument for encounter time

The following simple mean-field argument has been used
to estimate the mean encounter time in this system, in Refs.
�17,20�. At each time step, a single walker moves, each with
probability 1 /N, so that the distinguished walker moves on
average once every N steps. Suppose that the distinguished
walker 0 does move. The probability of an encounter is the
probability that the site it jumps to �one of its z neighbors� is
occupied, which is �, assuming that all walkers are distrib-
uted uniformly on the lattice �the mean-field assumption�.
Similarly, another walker can attempt to move to the site
where walker 0 is sitting. The total probability of the distin-
guished walker interacting is thus 2�, giving an estimate

��� � 1/�2�� = V/�2N� �12�

for the mean encounter time per particle. We can refine this
calculation by taking �N−1� / �V−1�, rather than �, as the
probability that the site jumped to is occupied, by condition-
ing on the fact that the departure site is occupied. This gives
�����V−1� /2�N−1�. Note that this mean-field calculation is
also appropriate for the dynamics without exclusion studied
in the last section, in the case of a regular network. Indeed,
expanding Eq. �11� for small � gives back this mean-field
result.

The above argument gives an approximation of the mean
encounter time ��� on a lattice. However, this approximation
is uncontrolled, and it is thus not clear how good an approxi-
mation it is. We now show that ��� can in fact be calculated
exactly using the approach of Sec. II. The result of the �re-
fined� mean-field calculation turns out to be exactly correct,
suggesting that when we average over all possible configu-
rations of the particles, space “does not matter.”

2. Exact calculation of encounter time

For a regular network with exclusion, all microscopic
configurations are equally likely, as shown above, so that the
Kac recurrence theorem gives ���= ��� / �E�, where E again
denotes the encounter set of extended configurations for
which the distinguished walker 0 undergoes an encounter. To
calculate the mean encounter time ��� of a distinguished
walker, we must first explicitly define the set E of encounter
configurations. It is not initially clear how to do this, since
two walkers can never occupy the same site.

In fact, an encounter occurs exactly when the walker
which is chosen to move does so towards an occupied site.
To indicate this direction of motion, we augment the posi-
tional configuration of the particles s �before the move� with
an arrow, which sits on top of the moving walker and points
in its chosen direction of motion—one of z possible direc-
tions. The extended configurations thus take the form
�s ;w ,d�, where w� �1, . . . ,N� is the label of the moving
walker and d� �1, . . . ,z� is its chosen direction.

The set � of all extended configurations is thus given by
assigning to each of the N walkers a distinct site out of the V
possible sites, choosing one of the N occupied sites as the
moving walker, and then choosing one of z possible direc-
tions of motion. The total number of extended configurations
is thus

��� =
V!

�V − N�!
Nz . �13�

An encounter involves the distinguished walker 0 if either
�i� walker 0 is chosen to move, and it attempts to move
toward an occupied site; or �ii� walker 0 occupies the site
toward which another walker attempts to move. The first
requirement for the set E is thus that the distinguished walker
has at least one neighboring site occupied.

We split the set E of encounter configurations of the dis-
tinguished walker into disjoint sets Ep, in which this walker
has exactly p out of its z neighboring sites occupied �with
1
 p
z� and it actually does encounter a neighboring
walker, i.e., walker 0 moves toward an occupied neighbor, or
one of the particles in the neighboring sites jump toward
walker 0. Note that the sets Ep do not fill up the whole of �
due to these jumping conditions.

The mean encounter time per particle of the distinguished
walker 0 is thus given by

��� =
���

N�E�
=

���
N�p=1

z �Ep�
. �14�

The calculation of the sizes �Ep� of the sets Ep proceeds via
the following combinatorial arguments.
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First consider E1, the configurations in which the distin-
guished walker 0 has a single occupied site and does encoun-
ter its single neighboring particle when one of them moves.
Walker 0 can be placed in any of the V sites; the single
neighbor can then be chosen from the other �N−1� walkers,
and placed in any of the z neighboring sites. The �N−2�
remaining walkers can be placed in any of the remaining
�V− �z+1�� sites. Finally, only two configurations of the ar-
row are allowed: one which points from the distinguished
walker to its single occupied neighbor, and another pointing
from the neighbor to the distinguished walker. Thus,

�E1� = 2zV�N − 1�
�V − �z + 1��!

�V − �z + 1� − �N − 2��!
. �15�

Similarly, when the site of the walker 0 has p occupied
neighbors we obtain

�Ep� = 2pV	z

p

 �N − 1�!

�N − 1 − p�!
�V − �z + 1��!

��V − N� − �z − p��!
. �16�

Here, the binomial coefficient � z
p � counts the number of ways

of choosing the p neighboring sites out of z to be occupied,
the number of permutations �N−1�!

�N−1−p�! gives the number of
ways of placing p of the remaining �N−1� walkers in those
neighboring sites, and the arrow can be in any of 2p configu-
rations. �These results remain valid for N close to 0 or close
to V if we define the permutations to be 0 when the number
to choose is greater than the number available.�

The expression for �Ep� may be rewritten as

�Ep� = 2Vz�N − 1� ! 	z − 1

p − 1

	V − �z + 1�

N − �p + 1�

 . �17�

Thus, setting uªp−1, we have

�
p=1

z

�Ep� = 2Vz�N − 1� ! �
u=0

z−1 	z − 1

u

	V − �z + 1�

�N − 2� − u

 , �18�

=2Vz�N − 1� ! 	V − 2

N − 2

 . �19�

The equality in Eq. �19� comes from the interpretation of the
sum in Eq. �18� as the number of ways of choosing �N−2�
boxes from a total of �V−2�, split into a choice of u from the
first z−1 boxes, and the remaining �N−2�−u from the
V− �z+1� remaining boxes.

Finally, we obtain the exact result

��� =
V − 1

2�N − 1�
. �20�

Note that this is independent of the coordination number z,
and hence is valid for any regular network.

We might suppose that the independence under the dy-
namics of the Kac result would immediately show that the
spatial and mean-field results are the same. In fact, however,
the above argument shows that the sets of extended encoun-
ter configurations differ in each case, and so the argument is
more involved—despite the simplicity of the final result,
there does not appear to be a simpler derivation.

B. Inclusion of a probability of interaction

Within this same framework, we can allow for the possi-
bility that actual encounters occur only a certain fraction p of
the time, even if particles meet. This could model a repulsion
between agents, so that there is an unwillingess to interact, or
a territory that is large enough so that two animals in the
same coarse-grained cell move past each other without see-
ing each other.

To calculate the mean encounter time in this case, the
configurations may be extended further, taking the form
�s ;w ,d ,b�, where the b are independent Boolean variables
b� �0,1�, which indicate whether or not an encounter
occurs.

Denoting the new encounter set by E�ªE� �1�, where
�1� denotes when the Boolean variables are true, the result is
Peq�E��= pPeq�E�, and hence, ����= 1

p ���, so that the effect of
including the probability p is an extra factor 1

p in the expres-
sion for the mean encounter time, as is intuitively expected.

V. COMPLEX NETWORKS WITH EXCLUSION

In this section, we extend the results for many random
walkers with an exclusion interaction to the case of complex
networks, with a heterogeneous degree distribution. The dy-
namics is as follows. At each step, a walker is selected uni-
formly. If the walker is at site i, then it attempts to jump to
one of its ki neighboring sites, with equal probabilities 1 /ki.
If the trial site is unoccupied, then the jump is allowed, and
the particle is moved; if the trial site is occupied, then the
jump is rejected, and the particle remains where it was.

This case was previously studied in Ref. �12� by viewing
the system as fermions and relating the equilibrium distribu-
tion of occupation numbers to the Fermi-Dirac distribution.
Here, we reconsider these results using a more intuitive
method from Ref. �13�.

The combination of a heterogeneous network and the ex-
clusion interaction makes the calculation of even the equilib-
rium occupation number distribution highly nontrivial; in-
deed, it does not appear to be possible to obtain simple, exact
results for this quantity in general �12�. In the next section
we first consider the case of small, structured networks,
where simple arguments give analytical results. In the fol-
lowing section, we then give an approximate argument valid
for large networks.

Our arguments suppose that detailed balance holds, which
is in general not true for finite complex networks with exclu-
sion �25�. Nonetheless, for sufficiently large networks we
expect that this gives the correct result, and numerically the
approximation is very good in all the cases tried.

A. Small structured networks

For complex networks with some structure or which are
small enough, it is possible to obtain results for the complete
equilibrium distribution Peq�s� for each microscopic configu-
ration s, and from there obtain coarse-grained quantities such
as the mean occupation number of a given node, by explicit
calculation. Here, we give a simple example, which illus-
trates the general method.
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We consider a star-shaped network, representing a single
hub in a complex network. The network consists of a central
site 0 with L links to sites 1 , . . . ,L, each of which has only a
single link back to the hub. We consider two walkers moving
with exclusion on this network, so that the possible configu-
rations s are of the form s= �s1 ,s2�, where sj is the site oc-
cupied by particle j, although the results are easily extended
to more particles. There are two types of configuration: those
with a particle at the hub, of the form s= �0, i� or �i ,0�, of
which there are 2L; and those with no particle at the hub, of
the form s= �i , j�, with i, j�1 and i� j, of which there are
L�L−1�.

1. Equilibrium probability

Let pªp�i,j� be the equilibrium probability to be in con-
figuration �i , j�, with i�0 and j�0, i.e., with no particles at
the hub�. All probabilities are symmetric in the two argu-
ments. The transition probabilities are given by

P��0,i� → �j,i�� =
1

2L
, P��j,i� → �0,i�� =

1

2
. �21�

The second equation follows from the fact that there is a
probability 1/2 to move each particle from a configuration
�j , i�, to arrive at the configuration �0, i� or �j ,0�. From �j ,0�,
with probability 1/2 the particle at site j is chosen, but it is
unable to move due to the exclusion interaction and the pres-
ence of the other particle at the hub 0, which is the only site
available. If the particle at the hub is chosen, then it moves to
site i� j with probability 1 /L.

Supposing that the detailed balance condition

p�0,i�P��0,i� → �j,i�� = p�j,i�P��j,i� → �0,i�� �22�

holds, we obtain that p�0,i�=Lp. Since the normalization con-
dition �sPeq�s�=1 must be satisfied, we have

2L2p + L�L − 1�p = 1, �23�

and hence, p=1 / �3L2−L�.
We have thus found the equilibrium probability Peq�s� of

each configuration s. To find the mean occupation number
�ni� of site i, we must sum over configurations:

�ni� = �
s

ni�s�Peq�s� , �24�

where ni�s� is the occupation number of site i in the configu-
ration s. In the case of exclusion, ni can only take the values
0 and 1, so that the mean occupation of the hub is given by
a sum over those configurations s which have a particle in
the hub, giving

�n0� = 2L2p . �25�

The mean occupation of a site i�0 is similarly given by a
weighted sum over those configurations which have a par-
ticle in site i:

�ni� = p�i,0� + p�0,i� + �
j=1,. . .,L;j�i

�p�i,j� + p�j,i�� , �26�

=2Lp + 2�L − 1�p = �4L − 2�p . �27�

The normalization �n0�+�i=1
L �ni�=2 is then correctly satis-

fied, and these results have also been checked against nu-
merical simulations, with excellent agreement.

In such structured networks, we can also proceed to ob-
tain results for more detailed features of the probability dis-
tributions, such as higher moments.

2. Mean encounter time

Identifying particle 1 as the distinguished walker, the
probability Peq�E� of its encounter set may be calculated in a
similar way to that in Sec. IV A, as the sum over all configu-
rations such that 1 has a neighbor, weighted by the probabil-
ity that an encounter occurs, i.e., that 1 interacts with the
neighbor. In this simple system, encounters can occur only
with configurations of the form �0, i� or �i ,0�, for which one
of the particles is at the hub. In this case, the probability that
the two particles interact is 1 /2+1 / �2L�, since the particle
not at the hub always tries to jump toward the hub, whereas
the particle at the hub usually jumps toward an empty node.
Thus,

Peq�E� = �
i

�p�i,0� + p�0,i���1

2
+

1

2L

 , �28�

=p�L2 + L� , �29�

giving

��� =
1

p�L2 + L�
= 3 −

4

L + 1
. �30�

For a network with exclusion, the total number of spatial
configurations is V ! / �V−N�!, so that for arbitrary networks
this kind of calculation becomes intractable. Nonetheless, for
networks, which are small and/or have enough structure, it
can be carried out relatively easily.

B. Equilibrium distribution in the large-system approximation

For systems with many nodes, for which the above direct
method is impractical, it is instead necessary to turn to an
approximation, in which we assume that the occupation
numbers of neighboring sites are independent �12,13�. This is
valid when the system is large, or in a grand canonical situ-
ation, where the number of particles in the system can fluc-
tuate about a mean value, since in a finite system with a fixed
number of particles, the presence or absence of a particle at a
site i affects the conditional probability to have a particle at
site j� i, given the occupation number of site i.

To derive the equilibrium distribution in this approxima-
tion, the method of Ref. �13� can be applied, provided that
the detailed balance condition is assumed. As shown below,
the results first obtained in Ref. �12� are recovered, in a more
direct way. Rigorous results on the continuous-time version
of this system, the exclusion process, are given in ��26�,
Chap. VIII�. In particular, a rigorous proof is given that if
detailed balance holds, then the equilibrium distribution de-
rived below is the correct equilibrium distribution for a
countably infinite network.
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1. Neighboring sites

A given site i has occupation number ni, which is either 0
or 1, due to the exclusion interaction. Let pi be the probabil-
ity in equilibrium that the site is occupied, so that 1− pi is the
probability that it is empty. Then the mean occupation num-
ber is �ni�= pi, and we have �i�ni�=N, the total number of
particles present in the system.

Suppose that the particle on site i is chosen to move to-
ward a neighboring site j. The probability that the trial site is
unoccupied is �1− pj� under the independence approxima-
tion, and the probability that the direction toward site j is
chosen is 1 /ki. We thus obtain Pi→j =

1
Nki

�1− pj�. Here, the
assumption of independence of occupation states has already
been used.

Supposing that the detailed balance condition
piPi→j = pjPj→i holds, and substituting the expression for
Pi→j obtained above gives

1

ki
pi�1 − pj� =

1

kj
pj�1 − pi� . �31�

Rearranging to collect all terms in pi and pj on opposite sides
of the equation we see that

pi

ki�1 − pi�
=

pj

kj�1 − pj�
, �32�

and hence,

pi

ki�1 − pi�
= C , �33�

where C is a site-independent constant. Finally we obtain

pi =
Cki

1 + Cki
=

1

1 + Aki
−1 , �34�

where A is another constant, as was found in Ref. �12�. The
constant A is determined by the normalization condition
�pi=N, and thus, depends on the entire set of degrees �ki�.

2. Single site

A single-site variant of the above Markov chain method
gives an alternative derivation, as follows. Consider a site i
with degree ki. Let p0

�i�
ª1− pi and p1

�i�
ªpi be the equilib-

rium probability that the site is empty or occupied, respec-
tively. We first need a mean-field type estimate of the transi-
tion probabilities from empty to occupied, P0→1

�i� , and vice
versa, P1→0

�i� .
From a given node i, following a given link can in prin-

ciple lead to any new node j. A given node j is reached with
probability kj /K, due to the way in which the network is
constructed, since node j has kj incoming edges �12�.

With probability pj, there is a particle at node j. This
particle can jump to site i with probability 1 /kj, giving �13�

P0→1
�i� =

ki

N
�

j

kj

K
pj

1

kj
=

1

N
ki

�

�k�
. �35�

The second equality follows since � jpj =N and N /K=� / �k�,
and the factor of ki comes from the number of possible di-

rections from which particles can arrive at site i.
We calculate P1→0

�i� by arguing similarly. If the particle at
site i is selected, with probability 1 /N, then it can attempt to
move to any of the ki neighbors, each with probability 1 /ki.
The neighbor is site j with probability kj /K. The move is
successful only if the neighbor is empty, due to the exclu-
sion, and occurs with probability 1− pj, giving

P1→0
�i� =

1

N
�

j

kj

K
�1 − pj� . �36�

Note the extra factor �1− pj� compared to the expression for
independent dynamics in Ref. �13�.

We now assume that detailed balance holds, in the sense
that

�1 − pi�P0→1
�i� = piP1→0

�i� , �37�

even though, as discussed above, this can fail to be exactly
true. Then we finally obtain Eq. �34� again, but now with an
expression for A:

A =
�k�
�
	1 −

� jkjpj

K

 =

1

N
�

j

kj�1 − pj� . �38�

Although this equation appears to give new information, in
fact it turns out to be equivalent to the normalization condi-
tion.

Unfortunately, it does not seem to be possible to solve this
equation exactly to find A and the pi explicitly. In Ref. �12�,
A was found numerically by solving the normalization equa-
tion � jpj =N. This gives no insight into the quantity A, how-
ever.

An alternative is to find approximations to A. A first ap-
proximation is obtained by taking all ki equal to �k� in Eq.
�38�, giving

A�0� =
1 − �

�
�k� . �39�

As shown in Fig. 2, this already gives a reasonable approxi-
mation to the distribution pi for networks for which the de-
viation of the ki from their mean is small, although the cor-
responding pi

�0� calculated using this value for A do not
satisfy the normalization condition.

Further approximations may be obtained—either analyti-
cally or numerically—by an iterative scheme based on Eq.
�38� and with the initial value �Eq. �39�� for A:

A�n+1�
ª

1

N
�

j

kj�1 − pj
�n�� , �40�

pi
�n�

ª

1

1 + A�n�ki
−1 , �41�

giving

A�n+1� =
1

N
�

j

1

�A�n��−1 + kj
−1 . �42�

This iteration, which is easily implemented computationally,
quickly converges to a fixed point which gives the numeri-
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cally exact value of A and of the pj for the given degree
sequence, and thus provides an alternative numerical method
to that used in Ref. �12�.

C. Mean encounter time in the large-system approximation

The calculation of the mean encounter time in the large-
system approximation, supposing that the occupation prob-
abilities of neighboring sites are independent of each other,
proceeds as follows.

For the distinguished walker 0 to have an encounter, it
first must be at some site i, which occurs with probability
pi /N �giving a total probability 1 to be at some site�. There
are two possibilities for such encounters: either walker 0 is
chosen to jump, in which case it has an encounter if the trial
site is occupied, or another walker attempts to jump onto the
site occupied by walker 0.

The probabilities for these two possibilities are calculated
in the same way as the transition probabilities in the previous
section. Again denoting by E the encounter set of the distin-
guished walker, we obtain

Peq�E� = �
i

pi

N��
j

kj

K
pj + ki�

j

kj

K
pj

1

kj

 =

2

K
�

j

kjpj ,

�43�

and hence,

��� =
V�k�

2� jkjpj
. �44�

In fact, this calculation is basically that of the jamming prob-
ability studied in Ref. �12�, that is, the probability that a
particle that attempts to move is jammed �blocked� �12�,
which for us this corresponds to an encounter. Here, we have
re-expressed that calculation in terms of mean encounter
times.

VI. NUMERICAL RESULTS

In this section, the analytical results obtained in previous
sections are compared with the results of numerical simula-
tions on two different types of network, one regular and one
complex.

A. Regular network: linear chain

First consider a regular network, consisting of a linear
chain of V=100 sites, where each site is connected to its two
nearest neighbors, with periodic boundary conditions.

The mean encounter time of a distinguished walker for
dynamics both with and without exclusion on this chain are
shown in Fig. 1 as a function of the total number of walkers,
N, between 2 and V. To distinguish the two cases, the time is
shown as N���, i.e., as a raw number of steps, rather than as
a number of sweeps. The analytical and numerical results in
both cases agree very well.

The figure shows that the mean encounter time �in
sweeps� depends very little on the dynamics. The mean en-
counter time in the case of exclusion dynamics is generally

slightly shorter, which we can attribute to the fact that the
particles must be spread out more uniformly through the sys-
tem in this case due to the exclusion interaction.

Note that at first glance, the Kac result �Eq. �20�� does not
hold for a one-dimensional dynamics with strict exclusion,
since that result assumes ergodicity, i.e., that any configura-
tion can be reached from any other, which is not the case due
to the one-dimensional nature of the system: each walker is
always confined between the same two neighbors. However,
the result is in fact valid. This is because the mean encounter
time is a single-particle quantity, which can be calculated by
averaging over all particles in the system. The result for the
global encounter time �taking into account encounters of any
particle� will be the same in the ergodic and nonergodic
cases, since each time between two encounters is unaffected,
but may be assigned to a different walker. This then implies
equality also for the encounter times of a distinguished
walker.

B. Complex networks: random graphs with power-law degree
distributions

The second case is that of random networks with a power-
law degree distribution P�k��k−
. These are generated ac-
cording to the prescription in Ref. �27�: �i� a degree sequence
�ki�i=1

V is generated from the distribution, rejecting each ki if
it does not satisfy 2
ki
N; �ii� ki “stubs” are generated at
each node i; and �iii� pairs of stubs are chosen at random to
be connected. This method gives networks, which in general
include self-links from a given node back to itself, as well as
multiple links between nodes �28�. Since both the random-
walk dynamics and our analytical results take these into ac-
count, no attempt was made to remove them from the net-
work, as is done in Ref. �28� for example; rather, this gives a
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FIG. 1. �Color online� Mean encounter time N��� on a linear
chain of length V=100, as a function of the number of particles N,
with and without exclusion. Numerical results, evaluated as a mean
over 108 steps, are compared to the analytical results; lines are
shown as a guide for the eye. Error bars are of the order of the
symbol size. There is excellent agreement in both cases. Dashed
lines show the asymptotic behavior.
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more stringent test of the analytical results. The imposed
minimum degree of 2 at each node ensures that the resulting
network is connected with probability one �28�.

Power-law networks with smaller values of 
 have more
nodes of high degree, and in particular a few very highly
connected hubs. Particles will concentrate at or near these
hubs, and so intuitively this will lead to shorter mean en-
counter times. For an infinite system, the degree distribution
has a well-defined mean if and only if 
	2, but for a finite
network we can also consider 
�2. We do, however, impose
the total number of sites as a cutoff for the maximum al-
lowed degree.

Figure 2 shows a comparison of numerical and analytical
results for the mean occupation number �ni� �which is equal

to pi in the case of exclusion dynamics� in the case 
=2.5,
for dynamics with and without exclusion. We see that the
zeroth-order approximation pi�0� already provides a good
approximation for exclusion dynamics, even though the val-
ues of ki cover a wide range of values, including far from the
mean �k�. The converged pi agree very well indeed with the
numerical values, as was already found in Ref. �12�.

Figure 3 shows the mean encounter times for networks
with different power-law degree distributions. Part �a� shows
���, and part �b� shows 1 / ��� to exhibit more clearly the
differences between networks with different 
. The main ob-
servation is that networks with smaller 
, i.e., with highly
connected hubs, indeed have lower mean encounter times.
This is highlighted in Fig. 4, where the encounter time is
plotted for different values of � as a function of 
. We also
see that the exact and numerical results again agree very
well. Results for nonexclusion dynamics on the same graphs
are very similar, although slightly larger, for the same reason
as in regular networks, and are not shown.

VII. CONCLUSIONS

In conclusion, we have shown that it is often possible to
calculate analytically a key quantity in systems consisting of
many interacting random walkers, namely, the mean encoun-
ter time of a given particle. This was carried out for the case
of independent walkers and for walkers with exclusion on
regular and complex networks, and the results were success-
fully compared to numerical simulations.

For a given graph, the mean encounter time is very simi-
lar whether dynamics with or without exclusion is used, even
though the mean occupation numbers can be quite different.
This could change significantly if a different choice of inter-
action rule were used in the case of independent walkers.

At first glance, it seems that the results require averages
over a very long time to be valid, namely, the time required
for a given walker to explore the whole system. In the case
of a high-density system with exclusion, for example, this
time scale could be very long. In fact, however, the results
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FIG. 2. �Color online� Mean occupation number �ni� for each
site i, as a function of the degree ki of the site, for dynamics with
and without exclusion, on a single random network with power-law
degree distribution P�k��k−
 with 
=2.5. The network has V
=1000 nodes and mean degree �k�=5.036. The numerical data for
each site is shown as a symbol, and the curves show the analytical
results; the lowest curve is the zeroth-order approximation pi�0� in
the exclusion case. The complete curve in the case of independent
dynamics continues to grow linearly for larger ki �not shown�.
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FIG. 3. �Color online� �a� Mean encounter time ��� of a distinguished walker on networks with power-law degree distribution
P�k��k−
, for different values of 
 with V=1000 sites and for a chain with V=100, as a function of the density, �. Only data for exclusion
dynamics are shown; data for independent walkers are very close to these. To highlight the differences between the curves, �b� shows 1 / ���
for different 
 compared to the analytical results, drawn with black dotted lines. The lowest dashed line shows the mean-field result for
comparison.
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are unaffected by considering interacting particles, which ex-
change positions, so that the time scale required is more like
that for a single particle to explore the system when no oth-
ers are present.

The method employed can be extended to calculate other
mean encounter times of interest. For example, interaction
times between two distinguished walkers can be found. The
extension of these results to higher moments and the full
probability distribution of encounter times, and the effect of
different network structures on those results, are subjects for
future study.
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APPENDIX: INTUITIVE DERIVATION OF THE KAC
RECURRENCE THEOREM

Rigorous derivations of the Kac recurrence theorem, such
as can be found in Refs. �10,22,23�, do not always provide
intuition about why the result should be true. Here, a simple,
nonrigorous argument is given, which captures the essence
of the result.

To find the mean recurrence time ��A
rec� to a set A in a

discrete time, ergodic system, consider a long trajectory of
the system, of length T time steps. If at time t the system is
in A, then write a 1; if it is outside A, then write a 0, thus,
coding the trajectory as a symbol sequence of 0s and 1s.

At long times, T→�, the proportion of 1s in the sequence
converges to the equilibrium probability Peq�A� that the sys-
tem is inside A. This is the crucial part of the argument. From
a physical point of view, it is a weak version of the Boltz-
mann ergodic hypothesis, but in the case of discrete-time
stochastic processes it is made rigorous by the Kac recur-
rence theorem �22�. The number of 1s occurring in time T is
thus roughly TPeq�A�. Similarly, the total time spent outside
A is approximately T�1−Peq�A��.

Now consider rearranging the list of 1s and 0s so that
approximately the same number of 0s occurs between each
pair of consecutive 1s. The mean recurrence time is then this
number of 0s, plus 1 for the extra step to return to the next 1,
giving

��A
rec� = 1 +

T�1 − Peq�A��
TPeq�A�

=
1

Peq�A�
, �A1�

which is the Kac result.
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